
3.3 Optimal Decoding for DMC

From the previous section, we now know how to compute the error probabil-
ity for any given decoder. Here, we will attempt to find the “best” decoder.
Of course, by “best”, we mean “having minimum value of error probabil-
ity”. It is interesting to first consider the question of how many reasonable
decoders we can use.

Definition 3.25. “Reasonable” Decoder: Recall from 3.16 that a de-
coder x̂(·) is a function that map each observed valued of the channel output
y to the guessed value of the channel input. Therefore we can think of a
decoder as a table:

We have already seen this table representation in Example 3.22 and Example
3.23. Such table has |Y| rows. For each value of y, we need to specify what
is the value of x̂(y). To have a chance of correct guessing, any “reasonable”
decoder would select the value of x̂(y) from X . Therefore, there are |X ||Y|
reasonable decoders.

Example 3.26. The naive decoder in Example 3.21 is not a reasonable
decoder. The channel input X is either 0 or 1. So, it does not make sense
have a guess value of x̂(2) = 2 or x̂(3) = 3.

Example 3.27. “Reasonable” Decoder for BSC: For BSC in Example 3.1,
any decoder has to answer two important questions:

(a) What should be the guess value of X when Y = 0 is observed?

(b) What should be the guess value of X when Y = 1 is observed?

Essentially, any reasonable decoder for the BSC need to complete this
table:
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So, only four reasonable decoders for BSC.

Example 3.28. For the DMC defined in Example 3.21, how many reason-
able decoders are there?

We calculate the error probability of three decoders in Example 3.21, Ex-
ample 3.22, and Example 3.23. There are still many possibilities to evaluate.
Using MATLAB, we can find the error probability for all possible reasonable
decoders.

3.29. For general DMC, it would be tedious to list all possible decoders.
It is even more time-consuming to try to calculate the error probability for
all of them. Therefore, in this section, we will derive a visual construction
and a formula of the “optimal” decoder.

3.30. From the recipe 3.24 for finding P (C) and P (E), we see that P (C) is
the sum of our circled numbers. So, to maximize P (C), we want to circle
the largest number. For row y in the decoding table, whatever the value we
select for x̂(y) will determine which number will be circled in the column
corresponding to y in matrix P. To maximize P (C), we want to circle the
largest number in the column. This means x̂(y) should be the same as the
x value that maximizes the probability value in the corresponding column.

Example 3.31. For the DMC and the input probablities defined in Example
3.21, the joint pmf matrix P was found to be

x \ y 1 2 3[ ]
0 0.1 0.04 0.06
1 0.24 0.32 0.24

Therefore, the optimal decoder is
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3.32. Mathematically, we first note that to minimize P (E), we need to maximize P (C). Here,
we apply the total probability theorem by using the events [Y = y] to partition the sample space:

P (C) =
∑
y

P (C |[Y = y] )P [Y = y].

Event C is the event [X̂ = X]. Therefore,

P (C) =
∑
y

P
[
X̂ = X |Y = y

]
P [Y = y].

Now, recall that our decoder is a function of Y ; that is X̂ = x̂(Y ). So,

P (C) =
∑
y

P [x̂ (Y ) = X |Y = y ]P [Y = y]

=
∑
y

P [X = x̂ (y) |Y = y ]P [Y = y]

In this form, we see12 that for each Y = y, we should maximize P [X = x̂ (y) |Y = y ]. Therefore,
for each y, the decoder x̂(y) should output the value of x which maximizes P [X = x|Y = y]:

x̂optimal (y) = arg max
x

P [X = x |Y = y ] .

In other words, the optimal decoder is the decoder that maximizes the “a
posteriori probability” P [X = x |Y = y ].

Definition 3.33. The optimal decoder derived in 3.32 is called the maxi-
mum a posteriori probability (MAP) decoder:

x̂MAP (y) = x̂optimal (y) = arg max
x

P [X = x |Y = y ] .

3.34. After the fact, it is quite intuitive that this should be the best decoder.
Recall that the decoder don’t have a direct access to the X value.

• Without knowing the value of Y , to minimize the error probability, it
should guess the most likely value of X which is the value of x that
maximize P [X = x].

• Knowing Y = y, the decoder can update its probability about x from
P [X = x] to P [X = x|Y = y]. Therefore, the decoder should guess the
value of the most likely x value conditioned on the fact that Y = y.

12We also see that any decoder that produces random results (on the support of X) can not be better
than our optimal decoder. Outputting the value of x which does not maximize the a posteriori probability
reduces the contribution in the sum that gives P (C).
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3.35. We can “simplify” the formula for the MAP decoder even further.

Fist, recall “Form 1” of the Bayes’ theorem:

P (B|A) = P (A|B)
P (B)

P (A)
.

Here, we set B = [X = x] and A = [Y = y].

Therefore,
x̂MAP (y) = arg max

x
Q (y |x) p (x) . (6)

3.36. A recipe for finding the MAP decoder and its corresponding error
probability:

(a) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(b) Select (by circling) the maximum value in each column (for each value
of y) in the P matrix.

• If there are multiple max values in a column, select one.
This won’t affect the optimality of your answer.

(i) The corresponding x value is the value of x̂ for that y.

(ii) The sum of the selected values from the P matrix is P (C).

(c) P (E) = 1− P (C).

Example 3.37. We have applied recipe 3.36 back when we try to find the
optimal decoder in Example 3.31.
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Example 3.38. Find the MAP decoder and its corresponding error proba-
bility for the DMC channel whose Q matrix is given by

x \ y 1 2 3[ ]
0 0.5 0.2 0.3
1 0.3 0.4 0.3

and p = [0.6, 0.4]. Note that the DMC is the same as in Example 3.21 but
the input probabilities are different.

Definition 3.39. In many scenarios, the MAP decoder is too complicated
or the prior probabilities are unknown. In such cases, we may consider using
a suboptimal decoder that ignores the prior probability term in (6). This
decoder is called the maximum likelihood (ML) decoder:

x̂ML (y) = arg max
x

Q (y |x) . (7)

3.40. ML decoder is the same as the MAP decoder when X is a uniform
random variable. In other words, when the prior probabilities p(x) are
uniform, the ML decoder is optimal.

3.41. A recipe for finding the ML decoder and its corresponding error
probability:

(a) Select (by circling) the maximum value in each column (for each value
of y) in the Q matrix.

• If there are multiple max values in a column, select one.
Different choices will lead to different P (E). However, if the infor-
mation about p is not available at the decoder, it can not determine
which choice is better anyway.

• The corresponding x value is the value of x̂ for that y.

(b) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).
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(c) In the P matrix, select the elements corresponding to the selected po-
sitions in the Q matrix.

(d) The sum of the selected values from the P matrix is P (C).

(e) P (E) = 1− P (C).

Example 3.42. Find the ML decoder and its corresponding error proba-
bility a the DMC channel in Example 3.21 whose Q matrix is

x \ y 1 2 3[ ]
0 0.5 0.2 0.3
1 0.3 0.4 0.3

and p = [0.2, 0.8].

Example 3.43. Find the ML decoder and the corresponding error proba-
bility for a communication over BSC with p = 0.1 and p0 = 0.8.

Note that

• the prior probabilities p0 (and p1) is not used when finding x̂ML.

• the ML decoder and the MAP decoder are the same in this example

◦ ML decoder can be optimal even when the prior probabilities are
not uniform.
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3.44. In general, for BSC, it’s straightforward to show that

(a) when p < 0.5, we have x̂ML(y) = y with corresponding P (E) = p.

(b) when p > 0.5, we have x̂ML(y) = 1−y with corresponding P (E) = 1−p.

(c) when p = 0.5, all four reasonable decoders have the same P (E) = 1/2.

• In fact, when p = 0.5, the channel completely destroys any con-
nection between X and Y . In particular, in this scenario, X |= Y .
So, the value of the observed y is useless.

41


